The Definition of Standard ML

Robin Milner Mads Tofte
Robert Harper
Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh

Preface

A precise description of a programming language is a prerequisite for its im-
plementation and for its use. The description can take many forms, each
suited to a different purpose. A common form is a reference manual, which
is usually a careful narrative description of the meaning of each construction
in the language, often backed up with a formal presentation of the gram-
mar (for example, in Backus-Naur form). This gives the programmer enough
understanding for many of his purposes. But it is ill-suited for use by an
implementer, or by someone who wants to formulate laws for equivalence of
programs, or by a programmer who wants to design programs with mathe-
matical rigour.

This document is a formal description of both the grammar and the mean-
ing of a language which is both designed for large projects and widely used.
As such, it aims to serve the whole community of people seriously concerned
with the language. At a time when it is increasingly understood that pro-
grams must withstand rigorous analysis, particular for systems where safety
is critical, a rigorous language presentation is even important for negotiators
and contractors; for a robust program written in an insecure language is like
a house built upon sand.

Most people have not looked at a rigorous language presentation before.
To help them particularly, but also to put the present work in perspective
for those more theoretically prepared, it will be useful here to say some-
thing about three things: the nature of Standard ML, the task of language
definition in general, and the form of the present Definition.

Standard ML

Standard ML is a functional programming language, in the sense that the
full power of mathematical functions is present. But it grew in response to a
particular programming task, for which it was equipped also with full imper-
ative power, and a sophisticated exception mechanism. It has an advanced
form of parametric modules, aimed at organised development of large pro-
grams. Finally it is strongly typed, and it was the first language to provide a
particular form of polymorphic type which makes the strong typing remark-
ably flexible. This combination of ingredients has not made it unduly large,
but their novelty has been a fascinating challenge to semantic method (of
which we say more below).

il

ML has evolved over fourteen years as a fusion of many ideas from many
people. This evolution is described in some detail in Appendix E of the
book, where also we acknowledge all those who have contributed to it, both
in design and in implementation.

‘ML’ stands for meta language; this is the term logicians use for a language
in which other (formal or informal) languages are discussed and analysed.
Originally ML was conceived as a medium for finding and performing proofs
in a logical language. Conducting rigorous argument as dialogue between
person and machine has been a strong research interest at Edinburgh and
elsewhere, throughout these fourteen years. The difficulties are enormous,
and make stern demands upon the programming language which is used for
this dialogue. Those who are not familiar with computer-assisted reasoning
may be surprised that a programming language, which was designed for this
rather esoteric activity, should ever lay claim to being generally useful. On
reflection, they should not be surprised. LISP is a prime example of a lan-
guage invented for esoteric purposes and becoming widely used. LISP was
invented for use in artificial intelligence (AI); the important thing about Al
here is not that it is esoteric, but that it is difficult and varied; so much
so, that anything which works well for it must work well for many other
applications too.

The same can be said about the initial purpose of ML, but with a dif-
ferent emphasis. Rigorous proofs are complex things, which need varied and
sophisticated presentation — particularly on the screen in interactive mode.
Furthermore the proof methods, or strategies, involved are some of the most
complex algorithms which we know. This all applies equally to AI, but one
demand is made more strongly by proof than perhaps by any other applica-
tion: the demand for rigour.

This demand established the character of ML. In order to be sure that,
when the user and the computer claim to have together performed a rigorous
argument, their claim is justified, it was seen that the language must be
strongly typed. On the other hand, to be useful in a difficult application, the
type system had to be rather flexible, and permit the machine to guide the
user rather than impose a burden upon him. A reasonable solution was found,
in which the machine helps the user significantly by inferring his types for
him. Thereby the machine also confers complete reliability on his programs,
in this sense: If a program claims that a certain result follows from the rules
of reasoning which the user has supplied, then the claim may be fully trusted.

The principle of inferring useful structural information about programs is

v

also represented, at the level of program modules, by the inference of signa-
tures. Signatures describe the interfaces between modules, and are vital for
robust large-scale programs. When the user combines modules, the signature
discipline prevents him from mismatching their interfaces. By programming
with interfaces and parametric modules, it becomes possible to focus on the
structure of a large system, and to compile parts of it in isolation from one
another — even when the system is incomplete.

This emphasis on types and signatures has had a profound effect on the
language Definition. Over half this document is devoted to inferring types
and signatures for programs. But the method used is exactly the same as for
inferring what values a program delivers; indeed, a type or signature is the
result of a kind of abstract evaluation of a program phrase.

In designing ML, the interplay among three activities — language design,
definition and implementation — was extremely close. This was particularly
true for the newest part, the parametric modules. This part of the language
grew from an initial proposal by David MacQueen, itself highly developed;
but both formal definition and implementation had a strong influence on the
detailed design. In general, those who took part in the three activities cannot
now imagine how they could have been properly done separately.

Language Definition

Every programming language presents its own conceptual view of computa-
tion. This view is usually indicated by the names used for the phrase classes
of the language, or by its keywords: terms like package, module, structure,
exception, channel, type, procedure, reference, sharing, These terms also
have their abstract counterparts, which may be called semantic objects; these
are what people really have in mind when they use the language, or discuss
it, or think in it. Also, it is these objects, not the syntax, which represent the
particular conceptual view of each language; they are the character of the
language. Therefore a definition of the language must be in terms of these
objects.

Asis commonly done in programming language semantics, we shall loosely
talk of these semantic objects as meanings. Of course, it is perfectly possible
to understand the semantic theory of a language, and yet be unable to to
understand the meaning of a particular program, in the sense of its intention
or purpose. The aim of a language definition is not to formalise everything
which could possibly be called the meaning of a program, but to establish

a theory of semantic objects upon which the understanding of particular
programs may rest.

The job of a language-definer is twofold. First — as we have already sug-
gested — he must create a world of meanings appropriate for the language, and
must find a way of saying what these meanings precisely are. Here, he meets
a problem; notation of some kind must be used to denote and describe these
meanings — but not a programming language notation, unless he is passing
the buck and defining one programming language in terms of another. Given
a concern for rigour, mathematical notation is an obvious choice. Moreover,
it is not enough just to write down mathematical definitions. The world
of meanings only becomes meaningful if the objects possess nice properties,
which make them tractable. So the language-definer really has to develop a
small theory of his meanings, in the same way that a mathematician develops
a theory. Typically, after initially defining some objects, the mathematician
goes on to verify properties which indicate that they are objects worth study-
ing. It is this part, a kind of scene-setting, which the language-definer shares
with the mathematician. Of course he can take many objects and their theo-
ries directly from mathematics, such as functions, relations, trees, sequences,
.... But he must also give some special theory for the objects which make
his language particular, as we do for types, structures and signatures in this
book; otherwise his language definition may be formal but will give no in-
sight.

The second part of the definer’s job is to define evaluation precisely. This
means that he must define at least what meaning, M, results from evaluating
any phrase P of his language (though he need not explain exactly how the
meaning results; that is he need not give the full detail of every computation).
This part of his job must be formal to some extent, if only because the phrases
P of his language are indeed formal objects. But there is another reason for
formality. The task is complex and error-prone, and therefore demands a high
level of explicit organisation (which is, largely, the meaning of ‘formality’);
moreover, it will be used to specify an equally complex, error-prone and
formal construction: an implementation.

We shall now explain the keystone of our semantic method. First, we
need a slight but important refinement. A phrase P is never evaluated in
vacuo to a meaning M, but always against a background; this background
—call it B — is itself a semantic object, being a distillation of the meanings
preserved from evaluation of earlier phrases (typically variable declarations,
procedure declarations, etc.). In fact evaluation is background-dependent —

vi

M depends upon B as well as upon P.
The keystone of the method, then, is a certain kind of assertion about
evaluation; it takes the form

BFP=M

and may be pronounced: ‘Against the background B, the phrase P evaluates
to the meaning M’. The formal purpose of this Definition is no more, and no
less, than to decree exactly which assertions of this form are true. This could
be achieved in many ways. We have chosen to do it in a structured way, as
others have, by giving rules which allow assertions about a compound phrase
P to be inferred from assertions about its constituent phrases P, ..., P,.

The form of the Definition'

We have written the Definition in a form suggested by the previous remarks.
That is, we have defined our semantic objects in mathematical notation
which is completely independent of Standard ML, and we have developed
just enough of their theory to give sense to our rules of evaluation. Following
another suggestion above, we have factored our task by describing abstract
evaluation — the inference and checking of types and signatures (which can
be done at compile-time) — completely separately from concrete evaluation.
It really is a factorisation, because a full value in all its glory — you can think
of it as a concrete object with a type attached — never has to be presented.

The resulting document is, we hope, valuable as the essential point of ref-
erence for Standard ML. If it is to play this role well, it must be supplemented
by other literature. Some expository books have already been written, and
this Definition will be useful as a background reference for their readers. We
have also become convinced, while writing the Definition, that we could not
discuss many questions without making it far too long. Such questions are:
Why were certain design choices made? What are their implications for pro-
gramming? Was there a good alternative meaning for some constructs, or
was our hand forced? What different forms of phrase are equivalent? What
is the proof of certain claims? Many of these questions will not be answered

IThe Definition has evolved through a sequence of three previous versions, circulated
as Technical Reports. For those who have followed the sequence, we should point out
that the treatment of equality types and of admissibility has been slightly modified in
this publication to meet the claim for principal signatures. The changes are mainly in
Sections 4.9, 5.5 and 5.13 and in the inference rules 19, 20, 29 and 65.

vil

by pedagogic texts either. So we are writing a Commentary on the Defini-
tion which will assist people in reading it, and which will serve as a bridge
between the Definition and other texts.

Edinburgh
August 1989

viii

Contents

1 Introduction

2 Syntax of the Core

2.1 Reserved Words
2.2 Special constantso
2.3 Comments
2.4 Identifiers
2.5 Lexical analysis Lo
2.6 Infixed operators L.
2.7 Derived Formso
2.8 Grammar e
2.9 Syntactic Restrictions
3 Syntax of Modules
3.1 Reserved Words
3.2 Identifiers
3.3 Infixed operators
3.4 Grammar for Modules
3.5 Syntactic Restrictions
3.6 Closure Restrictions
4 Static Semantics for the Core
4.1 Simple Objects
4.2 Compound Objects
4.3 Projection, Injection and Modification
4.4 Types and Type functions
4.5 Type Schemes
4.6 Scope of Explicit Type Variables
4.7 Non-expansive Expressions
4.8 Closure. e
4.9 Type Structures and Type Environments
4.10 Inference Rules
4.11 Further Restrictions
4.12 Principal Environments

X

13
13
13
13
14
17
19

5 Static Semantics for Modules
5.1 Semantic Objects
5.2 Consistency
5.3 Well-formedness
54 Cycle-freedom oo
5.5 Admissibility
5.6 Type Realisation
57 Realisation.
5.8 Type Explication
5.9 Signature Instantiation
5.10 Functor Signature Instantiation
5.11 Enrichment
5.12 Signature Matching
5.13 Principal Signatures L.
5.14 Inference Rules
5.15 Functor Signature Matching

6 Dynamic Semantics for the Core
6.1 Reduced Syntax
6.2 Simple Objects
6.3 Compound Objects
6.4 BasicValues
6.5 Basic Exceptions Lo
6.6 Closures
6.7 Inference Rules

7 Dynamic Semantics for Modules
7.1 Reduced Syntax
7.2 Compound Objects
7.3 Inference Rules

8 Programs
A Appendix: Derived Forms
B Appendix: Full Grammar

C Appendix: The Initial Static Basis

38
38
39
39
40
40
40
41
41
41
41
42
42
43
45
o4

55
95
25
26
56
57
o8
29

68
68
68
70

75

78

82

87

D Appendix: The Initial Dynamic Basis 90

E Appendix: The Development of ML 95

References 102

Index 106

pal

1 INTRODUCTION 1

1 Introduction

This document formally defines Standard ML.

To understand the method of definition, at least in broad terms, it helps
to consider how an implementation of ML is naturally organised. ML is an
interactive language, and a program consists of a sequence of top-level decla-
rations; the execution of each declaration modifies the top-level environment,
which we call a basis, and reports the modification to the user.

In the execution of a declaration there are three phases: parsing, elabora-
tion, and evaluation. Parsing determines the grammatical form of a declara-
tion. Elaboration, the static phase, determines whether it is well-typed and
well-formed in other ways, and records relevant type or form information
in the basis. Finally evaluation, the dynamic phase, determines the value
of the declaration and records relevant value information in the basis. Cor-
responding to these phases, our formal definition divides into three parts:
grammatical rules, elaboration rules, and evaluation rules. Furthermore, the
basis is divided into the static basis and the dynamic basis; for example, a
variable which has been declared is associated with a type in the static basis
and with a value in the dynamic basis.

In an implementation, the basis need not be so divided. But for the
purpose of formal definition, it eases presentation and understanding to keep
the static and dynamic parts of the basis separate. This is further justified by
programming experience. A large proportion of errors in ML programs are
discovered during elaboration, and identified as errors of type or form, so it
follows that it is useful to perform the elaboration phase separately. In fact,
elaboration without evaluation is just what is normally called compilation;
once a declaration (or larger entity) is compiled one wishes to evaluate it —
repeatedly — without re-elaboration, from which it follows that it is useful to
perform the evaluation phase separately.

A further factoring of the formal definition is possible, because of the
structure of the language. ML consists of a lower level called the Core lan-
guage (or Core for short), a middle level concerned with programming-in-the-
large called Modules, and a very small upper level called Programs. With
the three phases described above, there is therefore a possibility of nine com-
ponents in the complete language definition. We have allotted one section
to each of these components, except that we have combined the parsing,
elaboration and evaluation of Programs in one section. The scheme for the

1 INTRODUCTION 2

ensuing seven sections is therefore as follows:

Core Modules Programs

Syntax | Section 2 | Section 3

Static Semantics | Section 4 | Section 5 | Section 8
Dynamic Semantics | Section 6 | Section 7

The Core provides many phrase classes, for programming convenience.
But about half of these classes are derived forms, whose meaning can be
given by translation into the other half which we call the Bare language.
Thus each of the three parts for the Core treats only the bare language; the
derived forms are treated in Appendix A. This appendix also contains a few
derived forms for Modules. A full grammar for the language is presented in
Appendix B.

In Appendices C and D the initial basis is detailed. This basis, divided
into its static and dynamic parts, contains the static and dynamic meanings
of all predefined identifiers.

The semantics is presented in a form known as Natural Semantics. It
consists of a set of rules allowing sentences of the form

At phrase = A’

to be inferred, where A is often a basis (static or dynamic) and A’ a semantic
object — often a type in the static semantics and a value in the dynamic
semantics. One should read such a sentence as follows: “against the back-
ground provided by A, the phrase phrase elaborates — or evaluates — to the
object A””. Although the rules themselves are formal the semantic objects,
particularly the static ones, are the subject of a mathematical theory which
is presented in a succinct form in the relevant sections. This theory, particu-
larly the theory of types and signatures, will benefit from a more pedagogic
treatment in other publications; the treatment here is probably the minimum
required to understand the meaning of the rules.

The robustness of the semantics depends upon theorems. Usually these
have been proven, but the proof is not included. In two cases, however,
they are presented as “claims” rather than theorems; these are the claim of
principal environments in Section 4.12, and the claim of principal signatures
in Section 5.13. We need further confirmation of our detailed proofs of these
claims, before asserting them as theorems.

2 SYNTAX OF THE CORE 3

2 Syntax of the Core

2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except
=) be used as identifiers.

abstype and andalso as case do datatype else

end exception fn fun handle if in infix
infixr let local nonfix of op open orelse
raise rec then type val with withtype while
¢y *1 43, = 5 .. = > >

2.2 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded
by a negation symbol (7). A real constant is an integer constant, possibly
followed by a point (.) and one or more digits, possibly followed by an
exponent symbol E and an integer constant; at least one of the optional
parts must occur, hence no integer constant is a real constant. Examples:
0.7 3.32E5 3E"7 . Non-examples: 23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of 256 characters (numbered 0 to 255)
such that the characters with numbers 0 to 127 coincide with the ASCII
character set. A string constant is a sequence, between quotes ("), of zero
or more printable characters (i.e., numbered 33-126), spaces or escape se-
quences. Each escape sequence starts with the escape character \ , and
stands for a character sequence. The escape sequences are:

\n A single character interpreted by the system as end-of-line.

\t Tab.

\"c The control character ¢, where ¢ may be any character with
number 64-95. The number of \~c¢ is 64 less than the number
of c.

\ddd The single character with number ddd (3 decimal digits de-
noting an integer in the interval [0, 255]).

\u n

\\ \

\f--f\ This sequence is ignored, where f--f stands for a sequence of
one or more formatting characters.

2 SYNTAX OF THE CORE 4

Strld

Var (value variables) long
Con (value constructors) long
ExCon (exception constructors) long
TyVar (type variables)
TyCon (type constructors) long
Lab (record labels)

(

structure identifiers) long
Figure 1: Identifiers

The formatting characters are a subset of the non-printable characters
including at least space, tab, newline, formfeed. The last form allows long
strings to be written on more than one line, by writing \ at the end of one
line and at the start of the next.

We denote by SCon the class of special constants, i.e., the integer, real,
and string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (x *) in
which comment brackets are properly nested. An unmatched comment bracket
should be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use var,
tyvar to range over Var, TyVar etc. For each class X marked “long” there
is a class longX of long identifiers; if x ranges over X then longz ranges over
longX. The syntax of these long identifiers is given by the following:
longr == = identifier
stridy.---.strid,.x qualified identifier (n > 1)

The qualified identifiers constitute a link between the Core and the Mod-
ules. Throughout this document, the term “identifier”, occurring without an
adjective, refers to non-qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes
(?) and underbars (_) starting with a letter or prime, or symbolic: any non-
empty sequence of the following symbols

Y% &8 $ 0 + -/ o< = > 7 @ \N - <~ | =

2 SYNTAX OF THE CORE)

In either case, however, reserved words are excluded. This means that for
example # and | are not identifiers, but ## and |=| are identifiers.
The only exception to this rule is that the symbol =, which is a reserved
word, is also allowed as an identifier to stand for the equality predicate. The
identifier = may not be re-bound; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a
prime; the subclass EtyVar of TyVar, the equality type variables, consists of
those which start with two or more primes. The subclass ImpTyVar of Ty Var,
the imperative type variables, consists of those which start with one or two
primes followed by an underbar. The complement AppTyVar = TyVar \
ImpTyVar consists of the applicative type variables. The other six classes
(Var, Con, ExCon, TyCon, Lab and Strld) are represented by identifiers
not starting with a prime. However, * is excluded from TyCon, to avoid
confusion with the derived form of tuple type (see Figure 22). The class Lab
is extended to include the numeric labels 1 2 3 --- i.e. any numeral not
starting with 0.

TyVar is therefore disjoint from the other six classes. Otherwise, the syn-
tax class of an occurrence of identifier id in a Core phrase (ignoring derived
forms, Section 2.7) is determined thus:

(13X

1. Immediately before — i.e. in a long identifier — or in an open
declaration, id is a structure identifier. The following rules assume
that all occurrences of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, ¢d is a record label.

3. Elsewhere in types id is a type constructor, and must be within the
scope of the type binding or datatype binding which introduced it.

4. Elsewhere, id is an exception constructor if it occurs in the scope of an
exception binding which introduces it as such, or a value constructor
if it occurs in the scope of a datatype binding which introduced it as
such; otherwise it is a value variable.

It follows from the last rule that no value declaration can make a “hole”
in the scope of a value or exception constructor by introducing the same
identifier as a variable; this is because, in the scope of the declaration which
introduces id as a value or exception constructor, any occurrence of id in a

2 SYNTAX OF THE CORE 6

pattern is interpreted as the constructor and not as the binding occurrence
of a new variable.

By means of the above rules a compiler can determine the class to which
each identifier occurrence belongs; for the remainder of this document we
shall therefore assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or a long identifier. Comments and formatting characters
separate items (except within string constants; see Section 2.2) and are oth-
erwise ignored. At each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr direc-
tive , which may occur as a declaration; this status only pertains to its use
as a var, a con or an ercon within the scope (see below) of the directive.
(Note that qualified identifiers never have infix status.) If id has infix sta-
tus, then “exp, id exp,” (resp. “pat, id pat,”) may occur — in parentheses
if necessary — wherever the application “id{1=exp,,2=exp,}” or its derived
form “id Cexp,, exp,)” (resp “id (pat,,pat,)”) would otherwise occur. On the
other hand, an occurrence of any long identifier (qualified or not) prefixed
by op is treated as non-infixed. The only required use of op is in prefixing a
non-infixed occurrence of an identifier ¢d which has infix status; elsewhere op,
where permitted, has no effect. Infix status is cancelled by the nonfix di-
rective. We refer to the three directives collectively as fixity directives.
The form of the fixity directives is as follows (n > 1):

infix (d) idy --- id,

infixr (d) idy --- id,
nonfix ¢dy -+ id,
where (d) is an optional decimal digit d indicating binding precedence. A
higher value of d indicates tighter binding; the default is 0. infix and

infixr dictate left and right associativity respectively; association is always
to the left for different operators of the same precedence. The precedence of

2 SYNTAX OF THE CORE 7

infix operators relative to other expression and pattern constructions is given
in Appendix B.

The scope of a fixity directive dir is the ensuing program text, except
that if dir occurs in a declaration dec in either of the phrases

let dec in --- end

local dec in --- end

then the scope of dir does not extend beyond the phrase. Further scope
limitations are imposed for Modules.

These directives and op are omitted from the semantic rules, since they
affect only parsing.

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be ex-
pressed in terms of a smaller number of syntactic forms, called the bare lan-
guage. These derived forms, and their equivalent forms in the bare language,
are given in Appendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable
atexp to range over AtExp, etc.
The grammatical rules for the Core are shown in Figures 3 and 4.

2 SYNTAX OF THE CORE 8

AtExp atomic expressions
ExpRow expression rows
Exp expressions

Match matches

Mrule match rules

Dec declarations

ValBind value bindings
TypBind type bindings
DatBind datatype bindings
ConBind constructor bindings
ExBind exception bindings

AtPat atomic patterns
PatRow pattern rows

Pat patterns

Ty type expressions
TyRow type-expression rows

Figure 2: Core Phrase Classes

The following conventions are adopted in presenting the grammatical

rules, and in their interpretation:

e The brackets () enclose optional phrases.

e For any syntax class X (over which z ranges) we define the syntax class
Xseq (over which zseq ranges) as follows:

TSeq = T (singleton sequence)
(empty sequence)
(z1,-+,7,) (sequence, n > 1)

(Note that the “--” used here, meaning syntactic iteration, must not
be confused with “...” which is a reserved word of the language.)

e Alternative forms for each phrase class are in order of decreasing prece-
dence; this resolves ambiguity in parsing, as explained in Appendix B.

e L (resp. R) means left (resp. right) association.

2 SYNTAX OF THE CORE 9

e The syntax of types binds more tightly than that of expressions.

e Each iterated construct (e.g. match, ---) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.

2 SYNTAX OF THE CORE

10

atexp scon special constant
(op)longuvar value variable
(op)longcon value constructor
(op)longexcon exception constructor
{ (ezprow) } record
let dec in exp end local declaration
Cexp)

eTProw lab = exp (, exprow) expression row

exp atexp atomic
exp atexp application (L)
exp, id expy infixed application
exp : ty typed (L)
erp handle match handle exception
raise exp raise exception
fn match function

match mrule (| match)

mrule pat => exp

dec val valbind value declaration
type typbind type declaration
datatype datbind datatype declaration
abstype datbind with dec end abstype declaration
exception erbind exception declaration
local decy in decy end local declaration
open longstrid, --- longstrid,, open declaration (n > 1)

empty declaration

decy (;) decs sequential declaration
infix (d) idy --- id, infix (L) directive
infixr (d) idy --- id, infix (R) directive
nonfix id; --- id, nonfix directive

valbind pat = exp (and valbind)
rec valbind

typbind tyvarseq tycon = ty (and typbind)

datbind ::= tyvarseq tycon = conbind (and datbind)

conbind = {op)con (of ty) (| conbind)

exbind = (op)excon (of ty) (and exbind)

(op) excon = (op)longexcon (and exbind)

Figure 3: Grammar: Expressions, Matches, Declarations and Bindings

2 SYNTAX OF THE CORE

atpat

patrow

pat

tyrow

lab = pat (, patrow)

atpat

(op)longcon atpat
(op)longezcon atpat
pat, con pat,

pat, excon paty

pat : ty

(op)var(: ty) as pat
tyvar

{ (tyrow) %}

tyseq longtycon

ty => tf

(ty)

lab : ty (, tyrow)

2.9 Syntactic Restrictions

e No pattern may contain the same var twice. No expression row, pattern

wildcard

special constant
variable

constant

exception constant
record

wildcard
pattern row

atomic

value construction

exception construction
infixed value construction
infixed exception construction
typed

layered

type variable

record type expression

type construction

function type expression (R)

type-expression row

Figure 4: Grammar: Patterns and Type expressions

row or type row may bind the same lab twice.

11

e No binding wvalbind, typbind, datbind or exbind may bind the same
identifier twice; this applies also to value constructors within a datbind.

e In the left side tyvarseq tycon of any typbind or datbind, tyvarseq must
not contain the same tyvar twice. Any tyvar occurring within the right
side must occur in tyvarseq.

2 SYNTAX OF THE CORE 12

e For each value binding pat = exp within rec, exp must be of the form
fn match, possibly constrained by one or more type expressions. The
derived form of function-value binding given in Appendix A, page 80,
necessarily obeys this restriction.

3 SYNTAX OF MODULES 13

3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived
forms. There are no further special constants; comments and lexical analysis
are as for the Core. The derived forms for modules concern functors and
appear in Appendix A.

3.1 Reserved Words

The following are the additional reserved words used in Modules.

eqtype functor include sharing
sig signature struct structure

3.2 Identifiers

The additional syntax classes for Modules are Sigld (signature identifiers) and
Funld (functor identifiers); they may be either alphanumeric — not starting
with a prime — or symbolic. The class of each identifier occurrence is de-
termined by the grammatical rules which follow. Henceforth, therefore, we
consider all identifier classes to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syn-
tax, there is a further scope limitation: if dir occurs in a structure-level
declaration strdec in any of the phrases

let strdec in --- end

local strdec in --- end
struct strdec end

then the scope of dir does not extend beyond the phrase.

One effect of this limitation is that fixity is local to a generative structure
expression — in particular, to such an expression occurring as a functor body.
A more liberal scheme (which is under consideration) would allow fixity di-
rectives to appear also as specifications, so that fixity may be dictated by a
signature expression; furthermore, it would allow an open or include con-
struction to restore the fixity which prevailed in the structures being opened,
or in the signatures being included. This scheme is not adopted at present.

3 SYNTAX OF MODULES 14

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 5. We use the variable
strexp to range over StrExp, etc. The conventions adopted in presenting the
grammatical rules for Modules are the same as for the Core. The grammat-

3 SYNTAX OF MODULES 15

StrExp structure expressions
StrDec structure-level declarations
StrBind structure bindings

SigExp signature expressions
SigDec signature declarations
SigBind signature bindings

Spec specifications

ValDesc value descriptions

TypDesc type descriptions
DatDesc datatype descriptions

ConDesc constructor descriptions
ExDesc exception descriptions
StrDesc structure descriptions
SharEq sharing equations
FunDec functor declarations

FunBind functor bindings
FunSigExp functor signature expressions

FunSpec functor specifications
FunDesc functor descriptions
TopDec top-level declarations

Figure 5: Modules Phrase Classes

ical rules are shown in Figures 6, 7 and 8.

It should be noted that functor specifications (FunSpec) cannot occur
in programs; neither can the associated functor descriptions (FunDesc) and
functor signature expressions (FunSigExp). The purpose of a funspec is to
specify the static attributes (i.e. functor signature) of one or more functors.
This will be useful, in fact essential, for separate compilation of functors.
If, for example, a functor g refers to another functor f then — in order to
compile ¢ in the absence of the declaration of f — at least the specification of
f (i.e. its functor signature) must be available. At present there is no special
grammatical form for a separately compilable “chunk” of text — which we
may like to call call a module — containing a fundec together with a funspec

3 SYNTAX OF MODULES 16

specifying its global references. However, below in the semantics for Modules
it is defined when a declared functor matches a functor signature specified for
it. This determines exactly those functor environments (containing declared
functors such as f) into which the separately compiled “chunk” containing
the declaration of g may be loaded.

3 SYNTAX OF MODULES

strexp

strdec

strbind

StgeTp

sigdec

sigbind

struct strdec end
longstrid

funid (strexp)

let strdec in strexp end

dec
structure strbind
local strdec; in strdecsy end

strdecy (;) strdecy

strid (: sigexp) = strexp (and strbind)
sig spec end

sigid

signature sigbind

sigdec, (;) sigdecy

sigid = sigexp (and sigbind)

17

generative
structure identifier
functor application
local declaration

declaration
structure
local
empty
sequential

generative
signature identifier

single
empty
sequential

Figure 6: Grammar: Structure and Signature Expressions

3.5 Syntactic Restrictions

e No binding strbind, sigbind, or funbind may bind the same identifier

twice.

e No description waldesc, typdesc, datdesc, exdesc, strdesc or fundesc may
describe the same identifier twice; this applies also to value constructors
within a datdesc.

3 SYNTAX OF MODULES

spec

valdesc
typdesc
datdesc
condesc
exdesc
strdesc

shareq

val wvaldesc

type typdesc

eqtype typdesc

datatype datdesc
exception exdesc
structure strdesc

sharing shareq

local spec; in spec, end
open longstrid, --- longstrid,,
include sigid, --- sigid,,

specy (5) specy

var : ty (and valdesc)

tyvarseq tycon (and typdesc)

tyvarseq tycon = condesc (and datdesc)
con (of ty) (| condesc)

excon (of ty) (and exdesc)

strid : sigexp (and strdesc)

longstrid, = --- = longstrid,,
type longtycon, = --- = longtycon,,

shareq, and shareq,

Figure 7: Grammar: Specifications

18

value

type

eqtype
datatype
exception
structure
sharing
local

open (n > 1)
include (n > 1)
empty
sequential

structure sharing
(n>2)

type sharing

(n > 2)

multiple

3 SYNTAX OF MODULES 19

fundec = functor funbind single
empty
fundecy (;) fundec, sequence
unbind = funid (strid : sigex : sigexp’) = strexp functor bindin
bind d (strid : sigexp) gexp’ trezp functor binding
(and funbind)
funsigexp = (strid : sigexp) : sigexp’ functor signature expression
funspec = functor fundesc functor specification
empty
funspec, (;) funspecy sequence
fundesc = funid funsigexp (and fundesc)
topdec = strdec structure-level declaration
sigdec signature declaration
fundec functor declaration

Note: No topdec may contain, as an initial segment, a shorter top-
level declaration followed by a semicolon.

Figure 8: Grammar: Functors and Top-level Declarations

3.6 Closure Restrictions

The semantics presented in later sections requires no restriction on reference
to non-local identifiers. For example, it allows a signature expression to refer
to external signature identifiers and (via sharing or open) to external
structure identifiers; it also allows a functor to refer to external identifiers of
any kind.

However, implementers who want to provide a simple facility for sep-
arate compilation may want to impose the following restrictions (ignoring
references to identifiers bound in the initial basis By, which may occur any-
where):

1. In any signature binding sigid = sigexp , the only non-local references
in sigexp are to signature identifiers.

2. In any functor description funid (strid : sigexp) : sigexp’ , the only
non-local references in sigexp and sigexp’ are to signature identifiers,
except that sigexp’ may refer to strid and its components.

3 SYNTAX OF MODULES 20

3. In any functor binding funid (strid : sigexp) (: sigexp’) = strexp ,
the only non-local references in sigexp, sigexp’ and strexp are to functor
and signature identifiers, except that both sigexp’ and strexp may refer
to strid and its components.

In the last two cases the final qualification allows, for example, sharing con-
straints to be specified between functor argument and result. (For a com-
pletely precise definition of these closure restrictions, see the comments to
rules 66 (page 48), 91 (page 52) and 96 (page 52) in the static semantics of
modules, Section 5.)

The significance of these restrictions is that they may ease separate com-
pilation; this may be seen as follows. If one takes a module to be a sequence
of signature declarations, functor specifications and functor declarations sat-
isfying the above restrictions then the elaboration of a module can be made
to depend on the initial static basis alone (in particular, it will not rely on
structures outside the module). Moreover, the elaboration of a module can-
not create new free structure or type names, so name consistency (as defined
in Section 5.2, page 39) is automatically preserved across separately com-
piled modules. On the other hand, imposing these restrictions may force the
programmer to write many more sharing equations than is needed if functors
and signature expressions can refer to free structures.

4 STATIC SEMANTICS FOR THE CORE 21

4 Static Semantics for the Core

Our first task in presenting the semantics — whether for Core or Modules,
static or dynamic — is to define the objects concerned. In addition to the
class of syntactic objects, which we have already defined, there are classes
of so-called semantic objects used to describe the meaning of the syntac-
tic objects. Some classes contain simple semantic objects; such objects are
usually identifiers or names of some kind. Other classes contain compound
semantic objects, such as types or environments, which are constructed from
component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built
from identifiers and two further kinds of simple objects: type constructor
names and structure names. Type constructor names are the values taken
by type constructors; we shall usually refer to them briefly as type names, but
they are to be clearly distinguished from type variables and type constructors.
Structure names play an active role only in the Modules semantics; they
enter the Core semantics only because they appear in structure environments,
which (in turn) are needed in the Core semantics only to determine the values
of long identifiers. The simple object classes, and the variables ranging over
them, are shown in Figure 9. We have included TyVar in the table to make
visible the use of « in the semantics to range over TyVar.

a or tyvar € TyVar type variables
t € TyName type names
m € StrName structure names

Figure 9: Simple Semantic Objects

Each o € TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality, i.e. whether it is a member of EtyVar
(defined on page 5). Independently hereof, each a possesses a boolean at-
tribute, the imperative attribute, which determines whether it is imperative,
i.e. whether it is a member of ImpTyVar (defined on page 5) or not.

Each ¢t € TyName has an arity £ > 0, and also possesses an equality
attribute. We denote the class of type names with arity & by TyName®.

4 STATIC SEMANTICS FOR THE CORE 22

With each special constant scon we associate a type name type(scon)
which is either int, real or string as indicated by Section 2.2.

4.2 Compound Objects

When A and B are sets Fin A denotes the set of finite subsets of A, and

A B denotes the set of finite maps (partial functions with finite domain)
from A to B. The domain and range of a finite map, f, are denoted Dom f
and Ran f. A finite map will often be written explicitly in the form {a; —
by, -+, ar — by}, k> 0; in particular the empty map is {}. We shall use the
form {z — e ; ¢} — a form of set comprehension — to stand for the finite
map f whose domain is the set of values x which satisfy the condition ¢, and
whose value on this domain is given by f(x) = e.

When f and g are finite maps the map f + g, called f modified by g, is
the finite map with domain Dom f U Dom g and values

(f + g)(a) = if @ € Dom g then g(a) else f(a).

The compound objects for the static semantics of the Core Language are
shown in Figure 10. We take U to mean disjoint union over semantic object
classes. We also understand all the defined object classes to be disjoint.

Note that A and V bind type variables. For any semantic object A,
tynames A and tyvars A denote respectively the set of type names and the set
of type variables occurring free in A. Moreover, imptyvars A and apptyvars A
denote respectively the set of imperative type variables and the set of ap-
plicative type variables occurring free in A.

4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples — for example,
the variable-environment component of a context. In such cases we rely
on variable names to indicate which component is selected. For instance
“VE of E” means “the variable-environment component of E” and “m of S”
means “the structure name of S”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple
to an argument, relying on the syntactic class of the argument to determine
the relevant function. For instance C(tycon) means (TE of C')tycon.

A particular case needs mention: C(con) is taken to stand for (VE of
(') con; similarly, C'(excon) is taken to stand for (VE of C')excon. The type

4 STATIC SEMANTICS FOR THE CORE 23

7 € Type = TyVar U RecType U FunType U ConsType
(11, 7) or 7)€ Type”
(o, -+, ag) *) e TyVar®
o € RecType = Lab fin Type
7 —= 71 € FunType = Type x Type
ConsType = UkZOConsType(k)
7®¢ € ConsType® = Type* x TyName®
0 or Aa™ .7 € TypeFen = U TyVar® x Type
o or Ya® .1 € TypeScheme = Uj>oTyVar® x Type
Sor (m,E) € Str= StrName x Env
(0,CE) € TyStr = TypeFcn x ConEnv
SE € StrEnv = Strld 2 Str
TE € TyEnv = TyCon 3 TyStr
CE € ConEnv = Con 3 TypeScheme
VE € VarEnv = (Var U Con U ExCon) 5 TypeScheme
EE € ExConEnv = ExCon 2 Type
Eor (SE,TE,VE,EFE) € Env = StrEnv x TyEnv x VarEnv x ExConEnv
T € TyNameSet = Fin(TyName)
U € TyVarSet = Fin(TyVar)
CorT,UFE € Context =TyNameSet x TyVarSet x Env

Figure 10: Compound Semantic Objects

scheme of a value constructor is held in VE as well as in TE (where it will
be recorded within a CFE); similarly, the type of an exception constructor is
held in VE as well as in FE. Thus the re-binding of a constructor of either
kind is given proper effect by accessing it in VE, rather than in TE or in EF.

Finally, environments may be applied to long identifiers. For instance if
longcon = stridy.---.stridg.con then E(longcon) means

(VE of (SE of ---(SE of (SE of E)stridy)stridy---)stridy)con.

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({},{}, VE,{}).

Modification: The modification of one map f by another map g, written
f + g, has already been mentioned. It is commonly used for environment

4 STATIC SEMANTICS FOR THE CORE 24

modification, for example E + E’. Often, empty components will be left
implicit in a modification; for example E + VE means E + ({}, {}, VE, {}).
For set components, modification means union, so that C' + (7, VE) means

((Tof CYUT, UofC, (Eof C)+VE)

Finally, we frequently need to modify a context C' by an environment F (or a
type environment TFE say), at the same time extending T of C' to include the
type names of E (or of TE say). We therefore define C' @ TFE, for example,
to mean C' + (tynames TE, TE).

4.4 Types and Type functions
A type 7 is an equality type, or admits equality, if it is of one of the forms

e «, where a admits equality;

e {laby — 1, ---, lab, — 7,}, where each 7; admits equality;
e 7MWt where t and all members of 7% admit equality;
o (7')ref.

A type function § = Aa® .7 has arity k; it must be closed — i.e. tyvars(t) C
a® — and the bound variables must be distinct. Two type functions are
considered equal if they only differ in their choice of bound variables (alpha-
conversion). In particular, the equality attribute has no significance in a
bound variable of a type function; for example, Aa.av — a and AS.S —
are equal type functions even if o admits equality but 5 does not. Similarly,
the imperative attribute has no significance in the bound variable of a type
function. If ¢ has arity k, then we write ¢ to mean Aa®.a®¢ (eta-conversion);
thus TyName C TypeFen. 6 = Aa'®) .7 is an equality type function, or admits
equality, if when the type variables a®) are chosen to admit equality then 7
also admits equality.

We write the application of a type function 6 to a vector 7% of types as
780, 1f § = Aa™ .7 we set 7 = 7{7®) /a(®} (beta-conversion).

We write 7{0®) /t)} for the result of substituting type functions 6§ for
type names t*) in 7. We assume that all beta-conversions are carried out
after substitution, so that for example

(T(k)t){/\oz(k) Tt} = T{T(k)/a(k) }.

A type is imperative if all type variables occurring in it are imperative.

4 STATIC SEMANTICS FOR THE CORE 25

4.5 Type Schemes

A type scheme o = Vo'¥) .7 generalises a type 7/, written o = 7/, if 7/ =
{7® /a®} for some 7*), where each member 7; of 7*) admits equality
if o; does, and 7; is imperative if a; is imperative. If o/ = VU .7/ then o
generalises o', written o > o', if o = 7’ and) contains no free type variable
of o. It can be shown that o = ¢’ iff, for all 7", whenever ¢’ = 7" then also
o-T1".

Two type schemes o and ¢’ are considered equal if they can be obtained
from each other by renaming and reordering of bound type variables, and
deleting type variables from the prefix which do not occur in the body. Here,
in contrast to the case for type functions, the equality attribute must be
preserved in renaming; for example Va.ao — o and VB.8 — [are only
equal if either both o and § admit equality, or neither does. Similarly, the
imperative attribute of a bound type variable of a type scheme is significant.
It can be shown that o = ¢’ iff 0 = ¢’ and ¢’ > 0.

We consider a type T to be a type scheme, identifying it with V().7.

4.6 Scope of Explicit Type Variables

In the Core language, a type or datatype binding can explicitly introduce
type variables whose scope is that binding. In the modules, a description of
a value, type, or datatype may contain explicit type variables whose scope is
that description. However, we still have to account for the scope of an explicit
type variable occurring in the “: ty” of a typed expression or pattern or in
the “of ty” of an exception binding. For the rest of this section, we consider
such occurrences of type variables only.

Every occurrence of a value declaration is said to scope a set of explicit
type variables determined as follows.

First, an occurrence of « in a value declaration val valbind is said to be
unguarded if the occurrence is not part of a smaller value declaration within
valbind. In this case we say that a occurs unguarded in the value declaration.

Then we say that « is scoped at a particular occurrence O of val valbind
in a program if (1) a occurs unguarded in this value declaration, and (2)
a does not occur unguarded in any larger value declaration containing the
occurrence O.

Hence, associated with every occurrence of a value declaration there is a
set U of the explicit type variables that are scoped at that occurrence. One

4 STATIC SEMANTICS FOR THE CORE 26

may think of each occurrence of val as being implicitly decorated with such
a set, for instance:

valp x = (let valpr gy Idl:’a->’a = fn z=>z in Idl Id1 end,
let valysyy Id2:7a->’a = fn z=>z in Id2 Id2 end)

valigy x = (let valy Id:’a->’a = fn z=>z in Id Id end,
fn z=> z:’a)

According to the inference rules in Section 4.10 the first example can
be elaborated, but the second cannot since ’a is bound at the outer value
declaration leaving no possibility of two different instantiations of the type
of Id in the application Id Id.

4.7 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the set Exp of ex-
pressions is partitioned into two classes, the expansive and the non-expansive
expressions. Any variable, constructor and fn expression, possibly con-
strained by one or more type expressions, is non-expansive; all other ex-
pressions are said to be expansive. The idea is that the dynamic evaluation
of a non-expansive expression will neither generate an exception nor extend
the domain of the memory, while the evaluation of an expansive expression
might.

4.8 Closure

Let 7 be a type and A a semantic object. Then Clos4(7), the closure of T with
respect to A, is the type scheme Ya® .7, where a*) = tyvars(r) \ tyvars A.
Commonly, A will be a context C'. We abbreviate the total closure Closg (7)
to Clos(7). If the range of a variable environment VE contains only types
(rather than arbitrary type schemes) we set

ClossVE = {id — Closa(1) ; VE(id) = 7}

with a similar definition for Clos,CFE.

Closing a variable environment VE that stems from the elaboration of a
value binding valbind requires extra care to ensure type security of references
and exceptions and correct scoping of explicit type variables. Recall that
valbind is not allowed to bind the same variable twice. Thus, for each var €

4 STATIC SEMANTICS FOR THE CORE 27

Dom VE there is a unique pat = exp in valbind which binds var. If VE(var) =
7, let Closc yamind VE (var) = Va'®) 1. where

a® — { tyvars T \ tyvars C, if exp is non-expansive;
apptyvars 7 \ tyvars C, if exp is expansive.

Notice that the form of valbind does not affect the binding of applicative
type variables, only the binding of imperative type variables.

4.9 Type Structures and Type Environments

A type structure (0, CE) is well-formed if either CE' = {}, or 6 is a type name
t. (The latter case arises, with CE # {}, in datatype declarations.) All type
structures occurring in elaborations are assumed to be well-formed.

A type structure (¢, CE) is said to respect equality if, whenever ¢ admits
equality, then either ¢t = ref (see Appendix C) or, for each CE(con) of the
form Va® (7 — a®t), the type function Aa®).7 also admits equality. (This
ensures that the equality predicate = will be applicable to a constructed
value (con,v) of type 7™t only when it is applicable to the value v itself,
whose type is 7{7®) /a®1.) A type environment TE respects equality if all
its type structures do so.

Let TE be a type environment, and let 7" be the set of type names ¢ such
that (¢, CE) occurs in TE for some CE # {}. Then TF is said to maximise
equality if (a) TE respects equality, and also (b) if any larger subset of T’
were to admit equality (without any change in the equality attribute of any
type names not in 7') then TF would cease to respect equality.

For any TE of the form

TE = {tycon, — (t;,CE;) ; 1 <i <k},

where no CFE; is the empty map, and for any E we define Abs(TFE, E) to be
the environment obtained from E and TE as follows. First, let Abs(TE) be
the type environment {tycon, — (¢;,{}); 1 <i < k} in which all constructor
environments CE; have been replaced by the empty map. Let ¢}, - ¢, be
new distinct type names none of which admit equality. Then Abs(TFE, E)
is the result of simultaneously substituting ¢, for ¢;, 1 < i < k, throughout
Abs(TE) + E. (The effect of the latter substitution is to ensure that the use
of equality on an abstype is restricted to the with part.)

4 STATIC SEMANTICS FOR THE CORE 28

4.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form
At phrase = A

where A is usually an environment or a context, phrase is a phrase of the
Core, and A’ is a semantic object — usually a type or an environment. It
may be pronounced “phrase elaborates to A’ in (context or environment)
A”. Some rules have extra hypotheses not of this form; they are called side
conditions.

In the presentation of the rules, phrases within single angle brackets
() are called first options, and those within double angle brackets (()) are
called second options. To reduce the number of rules, we have adopted the
following convention:

In each instance of a rule, the first options must be either all
present or all absent; similarly the second options must be either
all present or all absent.

Although not assumed in our definitions, it is intended that every context
C =T,U, FE has the property that tynames £ C T. Thus T" may be thought
of, loosely, as containing all type names which “have been generated”. It is
necessary to include 7" as a separate component in a context, since tynames
may not contain all the type names which have been generated; one reason is
that a context T, (), E' is a projection of the basis B = (M, T), F, G, E whose
other components F' and G could contain other such names — recorded in T’
but not present in E. Of course, remarks about what “has been generated”
are not precise in terms of the semantic rules. But the following precise result
may easily be demonstrated:

Let Sbe asentence T, U, E - phrase = A such that tynames £ C
T, and let S’ be a sentence T',U’, E' - phrase’ = A’ occurring
in a proof of S; then also tynames £/ C T".

Atomic Expressions C & atexp = 7

(1)

C' = scon = type(scon)

C(longvar) = T
C + longvar = 7

(2)

4 STATIC SEMANTICS FOR THE CORE

C(longcon) = T
C = longcon = 7

C(longexcon) =1

C + longexcon = 1

(C'+ exprow = o)
C+{ (exprow) } = {}(+ o) in Type

Ckdec=FE COEFemp=rT
CF let dec in exp end = 7

Chkep=r
Ck(Cexp)=r

Comments:

29

(2),(3) The instantiation of type schemes allows different occurrences of a

single longvar or longcon to assume different types.

(6) The use of @, here and elsewhere, ensures that type names generated
by the first sub-phrase are different from type names generated by the

second sub-phrase.

Expression Rows C I exprow = o

Ckep=r (C'F exprow = o)

C'klab = exp (, exprow) = {lab — T7}{+ o)

Expressions

Ct atexp = 7
Ct atexp = 1

Crep=1—>r71 C+ atexp = 7'

(8)

Cklerp=r1

C & exp atexp = 1

Cremp=rT CHty=r1
Clrexp: ty=r1

(9)

(10)

(11)

4 STATIC SEMANTICS FOR THE CORE 30

Clkexp=r1 CF match = exn — 7

12

C' exp handle match = T (12)

CF e.xp = exn 13
CFraiseezp=T

CF match = 1 (14)

C F fn match= 1
Comments:

(9) The relational symbol F is overloaded for all syntactic classes (here
atomic expressions and expressions).

(11) Here 7 is determined by C' and ty. Notice that type variables in ty
cannot be instantiated in obtaining 7; thus the expression 1:’a will not
elaborate successfully, nor will the expression (fn x=>x):’a->’b. The
effect of type variables in an explicitly typed expression is to indicate
exactly the degree of polymorphism present in the expression.

(13) Note that 7 does not occur in the premise; thus a raise expression has
“arbitrary” type.

Matches |C F match = 7|
C'+ mrule = 7 (C'F match = 1) (15)

C'+ mrule (| matchy = 1
Match Rules C + mrule = 7|
Ct pat = (VE, 1) C+VEF exp=1 (16)

Ckopat=>exp =171

Comment: This rule allows new free type variables to enter the context.
These new type variables will be chosen, in effect, during the elaboration of
pat (i.e., in the inference of the first hypothesis). In particular, their choice
may have to be made to agree with type variables present in any explicit
type expression occurring within exp (see rule 11).

4 STATIC SEMANTICS FOR THE CORE 31

Declarations \C & dec = E|

C + Ut valbind = VE VE' = Closc vamind VE UNtyvars VE = ()
C F valy valbind = VE' in Env

(17)
CF typbind = TE (18)
C + type typbind = TFE in Env
C @& TFE F datbind = VE,TE V(t,CE) € RanTE, t ¢ (T of C)
TFE maximises equality (19)

C't datatype datbind = (VE,TFE) in Env

C ®TE v datbind = VE,TE ¥(t,CE) € RanTE, ¢ ¢ (T of C)
C& (VE, TE)+ dec = FE TE maximises equality

C't abstype datbind with dec end = Abs(TE, E)

(20)
Ct exbind = EE VE = EFE (21)
C F exception exbind = (VE, EF) in Env
Ct deci = E; C® EF decy = Ey (22)
C' t local decy in decy end = E,
C(longstrid,) = (my, Ey) - C(longstrid,) = (my,, E,) (23)
C + open longstrid, --- longstrid,, = Ey +--- + E,
24
Cr = {} in Env (24)
c+ d601 = F; Co E; F d@CQ = Fy (25)

C't decy (;) decy = E1 + Fy
Comments:
(17) Here VE will contain types rather than general type schemes. The clo-

sure of VE is exactly what allows variables to be used polymorphically,
via rule 2.

Moreover, U is the set of explicit type variables scoped at this particular
occurrence of val wvalbind, cf. Section 4.6, page 25. The side-condition

4 STATIC SEMANTICS FOR THE CORE 32

on U ensures that these explicit type variables are bound by the closure
operation. On the other hand, no other explicit type variable occurring
free in VE will become bound, since it must be in U of C, and is there-
fore excluded from closure by the definition of the closure operation
(Section 4.8, page 26) since U of C' C tyvars C.

(19),(20) The side conditions express that the elaboration of each datatype
binding generates new type names and that as many of these new names
as possible admit equality. Adding TFE to the context on the left of the
F captures the recursive nature of the binding.

(20) The Abs operation was defined in Section 4.9, page 27.

(21) No closure operation is used here, since EF maps exception names
to types rather than to general type schemes. Note that EE is also
recorded in the VarEnv component of the resulting environment (see
Section 4.3, page 22).

Value Bindings |C F valbind = VE |

C+ pat = (VE, 1) Crep=r (C'+ valbind = VE)
C F pat = exp (and valbind) = VE (+ VE')

C +VE F valbind = VE
C F rec valbind = VE

(26)

(27)

Comments:

(26) When the option is present we have Dom VE N Dom VE' =) by the
syntactic restrictions.

(27) Modifying C' by VE on the left captures the recursive nature of the
binding. From rule 26 we see that any type scheme occurring in VE
will have to be a type. Thus each use of a recursive function in its own
body must be ascribed the same type.

Type Bindings C typbind = TE

tyvarseq = ¥ ChHty=r (C'F typbind = TE)
C' = tyvarseq tycon = ty (and typbind) =
{tycon — (Aa® .7, {})} (+ TE)

(28)

4 STATIC SEMANTICS FOR THE CORE 33

Comment: The syntactic restrictions ensure that the type function Aa® 7
satisfies the well-formedness constraints of Section 4.4 and they ensure tycon ¢
Dom TE.

Data Type Bindings C - datbind = VE, TE

tyvarseq = o'®) C,a®t - conbind = CE
(C + datbind = VE, TE Y(t',CE) € RanTE,t # t')

C' | tyvarseq tycon = conbind (and datbind) =
ClosCE(+ VE), {tycon > (t,ClosCE)} (+ TE)

(29)

Comment: The syntactic restrictions ensure Dom VE N Dom CE = () and
tycon ¢ Dom TE.

Constructor Bindings C, 1t conbind = CE
(CHty=1) ((C, 7 F conbind = CE)) (30)

C, 7t con (of ty) ((| conbind)) =

{con = 7} (+ {con — 7" = 7}) ({(+ CE))

Comment: By the syntactic restrictions con ¢ Dom CE.
Exception Bindings |C + exbind = EF|
(C'Fty= 7 7 isimperative) ((C'F exbind = EFE)) (31)

C' I excon (of ty) ((and exbind)) =
{excon — exn} (+ {excon — 7 — exn}) ((+ EE))

C(longexcon) =1 (C F exbind = EFE) (32)

C't excon = longezcon (and exbind) = {excon — 7} (+ EE)
Comments:

(31) Notice that 7 must not contain any applicative type variables.

(31),(32) There is a unique EE, for each C and ezbind, such that C' +
exbind = EFE.

4 STATIC SEMANTICS FOR THE CORE 34

Atomic Patterns C+ atpat = (VE, T)
=7)
C' scon = ({}, type(scon)) (34)
C'+wvar = ({var — 7}, 1) (35)
C(longcon) = 7t (36)
C I longcon = ({},7t)
C(longexcon) = exn (37)
C' I longexcon = ({}, exn)
(C'F patrow = (VE, 0)) (39)
C A (patrow) ¥ = ({}{(+ VE), {}{+ o) in Type)
Ct pat = (VE,T) (39)
CF (pat) = (VE,T)
Comments:
(35) Note that var can assume a type, not a general type scheme.
Pattern Rows C F patrow = (VE, o)
40
Ck...={}, 0 (40)
CF pat = (VE,T) (C'+ patrow = (VE', o) lab ¢ Dom p) (41)

C F lab = pat (, patrow) = (VE(+ VE"), {lab— T7}{+ 0))
Comment:

(41) By the syntactic restrictions, Dom VE N Dom VE' = ().

4 STATIC SEMANTICS FOR THE CORE 35

Patterns C'+ pat = (VE, 1)
CF atpat = (VE, T) (42)
CF atpat = (VE,T)
C(longcon) =17 =71 Ct atpat = (VE,7') (43)
C' + longcon atpat = (VE, T)
C(longexcon) = 7 — exn C'+ atpat = (VE, T) (44)
C'+ longexcon atpat = (VE, exn)
Ct+ pat = (VE,T) Chty=r1 (45)
Ct pat : ty= (VE,T)
C+var = (VE,T) (CHtly=rT1)
C+ pat = (VE', 1) (46)
C + var(: ty) as pat = (VE + VE',7)
Comments:
(46) By the syntactic restrictions, Dom VE N Dom VE' = ().
Type Expressions Crty=r
tyvar = «
47
CF tyvar = « 47)
(C'F tyrow = o) (48)
C+A{ (tyrow) } = {}{(+ o) in Type
tyseq = ty,---ty, Chity, =7 (1<i<k)
C(longtycon) = (6, CE) (49)
C' + tyseq longtycon = 79
Chty=r CrHty =1 (50)
Chty->ty =17—>1
ChHty=r1
1
CH(ty)=r1 (51)

Comments:

(49) Recall that for 710 to be defined, § must have arity k.

4 STATIC SEMANTICS FOR THE CORE 36

Type-expression Rows CF tyrow = o

Chity=r (C'F tyrow = p)
CHlab : ty (, tyrow) = {lab — 7}(+ o)

Comment: The syntactic constraints ensure lab ¢ Dom p.

(52)

4.11 Further Restrictions

There are a few restrictions on programs which should be enforced by a
compiler, but are better expressed apart from the preceding Inference Rules.
They are:

1. For each occurrence of a record pattern containing a record wildcard,
i.e. of the form {laby=pat,,---,lab,,=pat,,, ...} the program context
must determine uniquely the domain {laby, -, lab,} of its record type,
where m < n; thus, the context must determine the labels {lab,, 1, -, lab, }
of the fields to be matched by the wildcard. For this purpose, an ex-
plicit type constraint may be needed. This restriction is necessary to
ensure the existence of principal type schemes.

2. In a match of the form pat, => exp, | --- | pat, => exp,, the pattern
sequence paty, ..., pat, should be irredundant; that is, each pat; must
match some value (of the right type) which is not matched by pat, for
any ¢ < j. In the context fn match, the match must also be exhaus-
tive; that is, every value (of the right type) must be matched by some
pat,. The compiler must give warning on violation of these restrictions,
but should still compile the match. The restrictions are inherited by
derived forms; in particular, this means that in the function binding
var atpat, --- atpat,(: ty) = exp (consisting of one clause only), each
separate atpat; should be exhaustive by itself.

4.12 Principal Environments

The notion of enrichment, E >~ E’, between environments F = (SE, TE, VE, EF)
and E' = (SE', TE', VE' | EE") is defined in Section 5.11. For the present sec-
tion, F = E’ may be taken to mean SE = SE' = {}, TE = TE', EE = EF/,
Dom VE = Dom VE' and, for each id € Dom VE, VE(id) = VE'(id).

Let C' be a context, and suppose that C' - dec = E according to the
preceding Inference Rules. Then E is principal (for dec in the context C')

4 STATIC SEMANTICS FOR THE CORE 37

if, for all £’ for which C' + dec = E’, we have E = E’. We claim that
if dec elaborates to any environment in C' then it elaborates to a principal
environment in C'. Strictly, we must allow for the possibility that type names
and imperative type variables which do not occur in C' are chosen differently
for £ and E’. The stated claim is therefore made up to such variation.

5 STATIC SEMANTICS FOR MODULES 38

5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core.
The compound objects are those for the Core, augmented by those in Fig-
ure 11.

M € StrNameSet = Fin(StrName)
N or (M,T) € NameSet = StrNameSet x TyNameSet
Yor (N)S € Sig= NameSet x Str
® or (N)(S,(N')S’") € FunSig = NameSet x (Str x Sig)
G € SigEnv = Sigld fin Sig
F € FunEnv = Funld FunSig
Bor N,F,G,E € Basis = NameSet x FunEnv x SigEnv x Env

Figure 11: Further Compound Semantic Objects

The prefix (N), in signatures and functor signatures, binds both type
names and structure names. We shall always consider a set N of names as
partitioned into a pair (M, T) of sets of the two kinds of name.

It is sometimes convenient to work with an arbitrary semantic object A,
or assembly A of such objects. As with the function tynames, strnames(A)
and names(A) denote respectively the set of structure names and the set of
names occurring free in A.

Certain operations require a change of bound names in semantic objects;
see for example Section 5.7. When bound type names are changed, we de-
mand that all of their attributes (i.e. imperative, equality and arity) are
preserved.

For any structure S = (m, (SE,TE,VE, EE)) we call m the structure
name or name of S; also, the proper substructures of S are the members
of Ran SE and their proper substructures. The substructures of S are S
itself and its proper substructures. The structures occurring in an object or
assembly A are the structures and substructures from which it is built.

The operations of projection, injection and modification are as for the
Core. Moreover, we define C of B to be the context (T of B,(), E of B),
i.e. with an empty set of explicit type variables. Also, we frequently need to

5 STATIC SEMANTICS FOR MODULES 39

modify a basis B by an environment £ (or a structure environment SE say),
at the same time extending N of B to include the type names and structure
names of £ (or of SE say). We therefore define B & SE, for example, to
mean B + (names SE, SE).

5.2 Consistency

A set of type structures is said to be consistent if, for all (0;,CE;) and
(92, CE2> in the set, if 81 = 92 then

CEl = {} or CE2 = {} or Dom CEI = Dom CE2

A semantic object A or assembly A of objects is said to be consistent if (after
changing bound names to make all nameset prefixes in A disjoint) for all S
and Sy occurring in A and for every longstrid and every longtycon

1. If mof S; = mof Sy, and both S;(longstrid) and Ss(longstrid) exist,
then
m of Si(longstrid) = m of Sy(longstrid)

2. If mof Sy = mof Sy, and both Sy (longtycon) and Ss(longtycon) exist,
then
0 of Sy (longtycon) = 6 of Sy(longtycon)

3. The set of all type structures in A is consistent

As an example, a functor signature (N)(S, (N')S’) is consistent if, assum-
ing first that N N N’ = (), the assembly A = {5, 5’} is consistent.

We may loosely say that two structures Sy and S are consistent if {57, S5}
is consistent, but must remember that this is stronger than the assertion that
S is consistent and S, is consistent.

Note that if A is a consistent assembly and A" C A then A’ is also a
consistent assembly.

5.3 Well-formedness

A signature (N)S is well-formed if N C names S, and also, whenever (m, E)
is a substructure of S and m ¢ N, then N N (namesFE) = (. A functor
signature (N)(S, (N")S") is well-formed if (N)S and (N')S" are well-formed,

5 STATIC SEMANTICS FOR MODULES 40

and also, whenever (m’, E') is a substructure of S” and m’ ¢ N U N’, then
(N UN’)N (names E') = ().

An object or assembly A is well-formed if every type environment, signa-
ture and functor signature occurring in A is well-formed.

5.4 Cycle-freedom

An object or assembly A is cycle-free if it contains no cycle of structure
names; that is, there is no sequence

mg, -+, Mg_1, M = mg (k> 0)

of structure names such that, for each i (0 < i < k) some structure with
name m; occurring in A has a proper substructure with name m;_ .

5.5 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and
cycle-free. Henceforth it is assumed that all objects mentioned are admissible.
We also require that

1. In every sentence A F phrase = A’ inferred by the rules given in
Section 5.14, the assembly {A, A’} is admissible.

2. In the special case of a sentence B F sigexp = S, we further require
that the assembly consisting of all semantic objects occurring in the
entire inference of this sentence be admissible. This is important for
the definition of principal signatures in Section 5.13.

In our semantic definition we have not undertaken to indicate how admissi-
bility should be checked in an implementation.

5.6 Type Realisation

A type realisation is a map ¢ty : TyName — TypeFcn such that ¢ and o1y (t)
have the same arity, and if ¢ admits equality then so does pry(?).

The support Supp ¢1y of a type realisation ¢y is the set of type names
t for which @y (t) # t.

5 STATIC SEMANTICS FOR MODULES 41

5.7 Realisation

A realisation is a function ¢ of names, partitioned into a type realisation
o1y : TyName — TypeFcen and a function ¢g;, : StrName — StrName. The
support Supp ¢ of a realisation ¢ is the set of names n for which ¢(n) # n.
The yield Yield ¢ of a realisation ¢ is the set of names which occur in some
¢(n) for which n € Supp .

Realisations ¢ are extended to apply to all semantic objects; their effect
is to replace each name n by ¢(n). In applying ¢ to an object with bound
names, such as a signature (N).S, first bound names must be changed so that,
for each binding prefix (IV),

NN (Supp e U Yieldp) =0 .

5.8 Type Explication

A signature (INV)S is type-explicit if, whenever ¢ € N and occurs free in
S, then some substructure of S contains a type environment 7FE such that
TE(tycon) = (t,CFE) for some tycon and some CFE.

5.9 Signature Instantiation

A structure S, is an instance of a signature 3, = (N1)S, written 3;>95,, if
there exists a realisation ¢ such that ¢(S;) = Ss and Suppy C N;. (Note
that if ¥, is type-explicit then there is at most one such ¢.) A signature
Yo = (N3)S, is an instance of 3y = (N7)Sy, written £;>%,, if 3;>5, and
Ny N (names 1) = (). It can be shown that ¥;>3, iff, for all S, whenever
EQZS then 2125

5.10 Functor Signature Instantiation

A pair (S, (N')S") is called a functor instance. Given ® = (Ny)(S1, (NV])S]),
a functor instance (Ss, (IV5)S%) is an instance of ®, written ®>(Ss, (N5)S%),
if there exists a realisation ¢ such that ¢(S1, (N7)S]) = (S2, (N5)Sh) and
Supp ¢ C Ni.

5 STATIC SEMANTICS FOR MODULES 42

5.11 Enrichment

In matching a structure to a signature, the structure will be allowed both to
have more components, and to be more polymorphic, than (an instance of)
the signature. Precisely, we define enrichment of structures, environments
and type structures by mutual recursion as follows.

A structure Sy = (my, Ey) enriches another structure Sy = (mg, Es),
written S7 = Sy, if

1. mi1 = My
2. By~ Ey

An environment F, = (SE,,TE,VE,, EE,) enriches another environment
E2 = (SEQ, TEQ, VEQ, EEQ), written El - EQ, if

1. Dom SE; O Dom SE,, and SE;(strid) > SEo(strid) for all strid €
Dom SE5

2. DomTE; 2 DomTE,, and TE,(tycon) »= TEs(tycon) for all tycon €
Dom TFE,

3. Dom VE; D Dom VE,, and VE;(id) > VE;(id) for all id € Dom VE,

4. Dom EE; O Dom EE,, and EFE;(excon) = EFEs(excon) for all ezcon €
Dom EFE,

Finally, a type structure (61, CE;) enriches another type structure (65, CE3),
written (91, OEl) - (027CE2>, if

1. 61 = 92
2. Either CE; = CE, or CEy = {}

5.12 Signature Matching

A structure S matches a signature X if there exists a structure S~ such
that ¥y > S~ < §. Thus matching is a combination of instantiation and
enrichment. There is at most one such S™, given ¥; and S. Moreover, writing
Y1 = (NV1)Sy, if 31 > S~ then there exists a realisation ¢ with Supp ¢ C Ny
and ¢(S1) = S~. We shall then say that S matches ¥; via ¢. (Note that if
Y1 is type-explicit then ¢ is uniquely determined by ¥; and S.)

5 STATIC SEMANTICS FOR MODULES 43

A signature Xy matches a signature